EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais – Agrupamentos 1 e 2

Duração da prova: 120 minutos

2003

1.ª FASE 2.ª CHAMADA VERSÃO 1

PROVA ESCRITA DE QUÍMICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por três Grupos, I, II e III.

- O Grupo I inclui seis itens de resposta fechada.
- O Grupo II inclui quatro questões de resposta aberta, envolvendo cálculos e/ou pedidos de justificação.
- O Grupo III inclui duas questões de resposta aberta e uma questão de resposta fechada, relativas a uma actividade experimental.

Nas respostas aos itens dos Grupos II e III serão aplicáveis as seguintes penalizações gerais:

- um ponto, nos itens em que ocorram erros nos resultados das operações matemáticas:
- um ponto, nos itens em que o resultado final não apresente unidades ou apresente unidades incorrectas.

FORMULÁRIO

n − quantidade de matéria

• Massa volúmica (ρ) $\rho = \frac{m}{V}$

m – massa

V – volume

• Concentração de solução (c) $c = \frac{n}{V}$

n – quantidade de matéria (soluto)

V – volume de solução

• Frequência de uma radiação electromagnética (v)..... $v = \frac{c}{\lambda}$

c – velocidade da luz no vazio

 λ – comprimento de onda

- Escreva na sua folha de respostas a letra correspondente à alternativa correcta que seleccionar para cada item.
- A indicação de mais do que uma alternativa implica cotação nula para o item em que tal se verifique.
- Não apresente cálculos e/ou justificações.
- 1. Uma orbital atómica é caracterizada pelos valores de três números quânticos: n (número quântico principal), ℓ (número quântico de momento angular) e m_{ℓ} (número quântico magnético).

Relativamente ao átomo de magnésio, ₁₂Mg, no estado de menor energia, seleccione a afirmação verdadeira.

- (A) Todos os electrões de valência pertencem a uma orbital caracterizada por n = 3, $\ell = 1$ e $m_{\ell} = 0$.
- **(B)** No segundo nível de energia existem dois electrões na orbital caracterizada por n = 2, $\ell = 1$ e $m_{\ell} = -1$.
- (C) A energia dos electrões na orbital caracterizada por n = 3, $\ell = 0$ e $m_{\ell} = 0$ é menor do que a dos electrões na orbital caracterizada por n = 2, $\ell = 1$ e $m_{\ell} = 0$.
- (D) A cada valor de ℓ correspondem ℓ + 1 valores de m_{ℓ} .
- (E) Os oito electrões caracterizados por n = 2 têm todos a mesma energia.
- 2. Considere as seguintes substâncias: água (H₂O), metano (CH₄), benzeno (C₆H₆), metanol (CH₃OH) e metanal (HCHO).

Relativamente a estas substâncias, seleccione a afirmação verdadeira.

- (A) As ligações intermoleculares predominantes no benzeno são do tipo dipolo instantâneo-dipolo induzido.
- **(B)** As ligações intermoleculares predominantes no metanal são do mesmo tipo que as predominantes no metano.
- (C) À pressão atmosférica normal, o ponto de ebulição do metanol é inferior ao do metanal.
- **(D)** As ligações intermoleculares predominantes no metanal são ligações (ou pontes) de hidrogénio.
- **(E)** Devido a terem massa molecular semelhante, o ponto de ebulição do metano é aproximadamente igual ao da água, à pressão atmosférica normal.

3. As seguintes afirmações dizem respeito a compostos orgânicos e suas reacções características.

Seleccione a afirmação verdadeira.

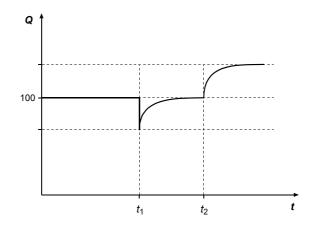
- (A) Uma reacção de esterificação é uma reacção entre um álcool primário e um éster.
- (B) As reacções de adição são características dos hidrocarbonetos saturados.
- (C) O composto 1,2-dicloroetano pode obter-se a partir de uma reacção de substituição do eteno.
- (D) Os aldeídos podem ser obtidos pela oxidação moderada de álcoois primários.
- (E) A propanona é mais facilmente oxidável do que o propanal.
- **4.** A hidrazina, N₂H₄, reage com o peróxido de hidrogénio, H₂O₂, originando ácido nítrico, HNO₃, e vapor de água, de acordo com a seguinte equação química:

$$N_2H_4(aq) + 7 H_2O_2(aq) \longrightarrow 2 HNO_3(aq) + 8 H_2O(g)$$

Num determinado ensaio, fazendo reagir 1,0 mol de hidrazina com uma solução de peróxido de hidrogénio com 7,0 mol deste composto, obtém-se 1,2 mol de ácido nítrico.

Relativamente a este ensaio, seleccione a afirmação verdadeira.

- (A) No final da reacção, permanecem 0,6 mol de hidrazina por reagir.
- (B) Nesta reacção, a quantidade de peróxido de hidrogénio que reage é 2,8 mol.
- (C) Neste ensaio, o rendimento da reacção é de 40%.
- (D) Se a reacção fosse completa, formavam-se mais 0,8 mol de ácido nítrico.
- (E) A quantidade de água que se forma é 8,0 mol.


5. Num sistema fechado estabelece-se, a uma determinada temperatura, o equilíbrio químico traduzido por:

$$X(g) \implies 2 Y(g) \qquad \Delta H > 0$$

sendo K_c = 100 a essa temperatura.

No instante t_1 aplica-se uma alteração ao estado de equilíbrio e no instante t_2 , após se ter atingido um novo estado de equilíbrio, aplica-se outra alteração.

O gráfico abaixo representa a variação do valor do quociente de reacção (Q) em função do tempo (t).

De acordo com este gráfico, seleccione a afirmação verdadeira.

- (A) No instante t_1 aumenta-se o volume do sistema e aumenta-se a temperatura.
- **(B)** No instante t_1 aumenta-se a temperatura a volume constante.
- (C) No instante \emph{t}_2 aumenta-se a quantidade de Y(g) a temperatura e volume constantes.
- (D) No instante t_2 aumenta-se a pressão a temperatura constante.
- (E) No instante t_2 aumenta-se a temperatura a volume constante.

6. Uma das etapas da produção do ácido nítrico a partir do amoníaco consiste na oxidação deste, de acordo com a seguinte equação química:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(\ell)$$
 $\Delta H < 0$

Seleccione a alternativa que permite completar correctamente a seguinte frase:

«Quando a reacção ocorre em sistema fechado, a volume e temperatura constantes, as trocas de energia entre o sistema e o exterior ocorrem sob a forma de...

- (A) ... calor do sistema para o exterior e de trabalho realizado pelo sistema sobre o exterior.»
- (B) ... calor do sistema para o exterior, não havendo realização de trabalho.»
- (C) ... calor do sistema para o exterior e de trabalho realizado pelo exterior sobre o sistema.»
- (D) ... calor do exterior para o sistema, não havendo realização de trabalho.»
- (E) ... calor do exterior para o sistema e de trabalho realizado pelo exterior sobre o sistema.»

Apresente todos os cálculos que efectuar.

1. Considere os elementos flúor, ₉F, sódio, ₁₁Na, magnésio, ₁₂Mg, e cálcio, ₂₀Ca.

Os estados de menor energia destes elementos correspondem às seguintes configurações electrónicas:

$$_{12}$$
Mg: $1s^2 2s^2 2p^6 3s^2$

$$_{20}$$
Ca: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Com base nesta informação, responda às seguintes questões.

1.1. Justifique a seguinte afirmação verdadeira:

«O magnésio e o cálcio pertencem ao mesmo grupo da Tabela Periódica.»

1.2. Atribua cada um dos seguintes valores de raio atómico, 72 pm, 160 pm e 186 pm, a cada um dos elementos flúor, sódio e magnésio.

$$(1 \text{ pm (picómetro)} = 10^{-12} \text{ m})$$

1.3. Atribua cada um dos seguintes valores de energia de 1.ª ionização, 590 kJ mol⁻¹, 738 kJ mol⁻¹ e 1680 kJ mol⁻¹, a cada um dos elementos flúor, magnésio e cálcio.

1.4. Os elementos flúor e magnésio originam iões estáveis, ₉F⁻ e ₁₂Mg²⁺, respectivamente. Justifique a seguinte afirmação verdadeira:

«O raio iónico de ₉F⁻ é maior do que o raio iónico de ₁₂Mg²⁺.»

- **2.** À temperatura de 25 °C preparam-se $100\,\mathrm{cm}^3$ de uma solução aquosa de cloreto de chumbo, PbC ℓ_2 , dissolvendo 0,167 g deste sal em água.
 - **2.1.** Mostre que a solução obtida tem a concentração de $6{,}00 \times 10^{-3}$ mol dm⁻³.
 - **2.2.** A solução aquosa preparada não está saturada. Justifique este facto, através do cálculo do quociente de reacção para

$$PbC\ell_2(s) \implies Pb^{2+}(aq) + 2 C\ell^{-}(aq)$$

- 2.3. Adiciona-se a esta solução uma pequena quantidade de cloreto de sódio sólido, NaCℓ(s), sem provocar alteração apreciável de volume, e mantendo-se a temperatura constante (considere a dissociação completa do cloreto de sódio em solução aquosa).
 - **2.3.1.** Mostre que a partir da concentração 2.0×10^{-1} mol dm⁻³ de ião cloreto, $C\ell^-$ (aq), se inicia a precipitação do cloreto de chumbo, PbC ℓ_2 (s).
 - **2.3.2.** Determine a quantidade máxima de cloreto de sódio, $n(\text{NaC}\ell)$, que se pode adicionar à solução sem que ocorra a precipitação do cloreto de chumbo, $\text{PbC}\ell_2(s)$.

$$M \text{ (PbC}\ell_2) = 278,1 \text{ g mol}^{-1}$$

 $K_s \text{ (PbC}\ell_2, \text{ a 25 °C)} = 2,4 \times 10^{-4}$

- 3. Numa solução aquosa de ácido cloroacético, CH₂CℓCOOH(aq), à temperatura de 25 °C, com a concentração de 1,00 × 10⁻² mol dm⁻³, a percentagem de ácido que se ioniza é 31,1%.
 - 3.1. Escreva a equação química da ionização do ácido cloroacético em água.
 - **3.2.** Verifique, através de cálculos, que a concentração de ácido cloroacético no equilíbrio é $6.89 \times 10^{-3} \text{ mol dm}^{-3}$.
 - **3.3.** Mostre, apresentando todos os cálculos necessários, que o pOH da solução aquosa de ácido cloroacético é 11.5.
 - **3.4.** Escreva a expressão da constante de acidez do ácido cloroacético e determine o seu valor, à temperatura de 25 °C.

$$K_{\rm w}$$
 (água, a 25 °C) = 1,0 × 10⁻¹⁴
11,5 = - log (3,2 × 10⁻¹²)

4. Em meio ácido e em condições padrão, os iões nitrito, NO₂(aq), reagem extensamente com os iões dicromato, Cr₂O₇²⁻(aq), originando iões nitrato, NO₃(aq), e iões crómio, Cr³⁺(aq), de acordo com a seguinte equação química (**não acertada**):

$$NO_{2}^{-}(aq) + Cr_{2}O_{7}^{2-}(aq) \longrightarrow NO_{3}^{-}(aq) + Cr^{3+}(aq)$$

Esta reacção é uma reacção de oxidação-redução.

- **4.1.** Indique, com base na variação dos números de oxidação do azoto e do crómio, qual é a espécie reduzida.
- 4.2. Sabendo que a equação de uma das semi-reacções é:

$$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(\ell)$$

escreva, devidamente acertada, a equação global que traduz a reacção descrita.

4.3. A expressão de ΔE^0 para a reacção é

$$\Delta E^0 = E^0 (Cr_2O_7^{2-} / Cr^{3+}) - E^0 (NO_3^- / NO_2^-)$$

Tendo em conta esta expressão, justifique a seguinte afirmação verdadeira:

«O valor do potencial padrão de eléctrodo (potencial normal de redução) do par (NO_3^-/NO_2^-) é inferior a +1,33 V.»

$$E^0 (Cr_2O_7^{2-}/Cr^{3+}) = + 1.33 V$$

Apresente todos os cálculos que efectuar.

Com o objectivo de estudar as propriedades dos gases ideais, um grupo de alunos efectuou a experiência que seguidamente se descreve.

Utilizaram um saco de material elástico, hermeticamente selado, contendo 50 cm³ de dióxido de carbono, CO₂(g), à temperatura ambiente de 20 °C e à pressão atmosférica de 1,0 atm.

Este saco (depois de preso a uma massa de chumbo, para não flutuar) foi colocado dentro de um balão volumétrico de 500 mL de capacidade que foi cheio com água a 20 °C, até ao traço de aferição (figura 1).

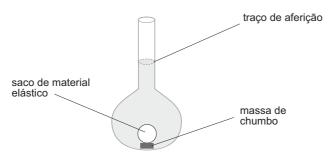


Fig. 1

Em seguida, o balão foi colocado em banho-maria e aquecido lentamente até 60 °C, a pressão constante. Quando a temperatura atingiu o valor de 30 °C, os alunos retiraram 1,8 cm³ de água, com uma pipeta volumétrica, para manter o nível de água no traço de aferição do balão (figura 2).

Repetiram o procedimento quando a temperatura atingiu os valores de 50 °C e de 60 °C.

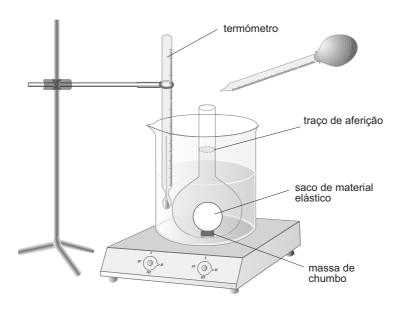
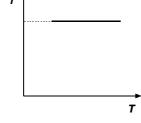


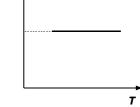
Fig. 2

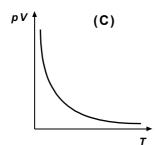
Os alunos registaram o volume de água retirado em cada uma dessas temperaturas, conforme se indica na seguinte tabela:

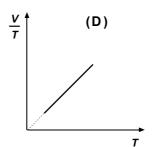
Temperatura a que se retira a água / °C	Volume de água retirado / cm³
30	1,8
50	3,5
60	1,6

1. Com esta experiência, os alunos pretendiam verificar a seguinte lei de Charles e Gay-Lussac para gases ideais:


«A pressão constante, o volume de uma dada quantidade de gás varia na razão directa da temperatura absoluta.»


Demonstre, através de cálculos, que essa lei dos gases ideais é verificada na experiência realizada.


2. Seleccione, de entre os gráficos abaixo esquematizados, aquele que traduz os resultados obtidos.



3. Determine a massa do dióxido de carbono contido na amostra.

R (constante dos gases ideais) = 0.082 atm dm³ mol⁻¹ K⁻¹

 $M (CO_2) = 44.0 \text{ g mol}^{-1}$

FIM

COTAÇÕES

	I			60 pontos
1.			10 pontos	
2.			10 pontos	
3.			10 pontos	
4.			10 pontos	
5.			10 pontos	
6.			10 pontos	
	П			110 nontos
1.	11			TTO POLICOS
•	1.1.	2 pontos	pointee	
	1.2.	7 pontos		
	1.3.	7 pontos		
	1.4.	6 pontos		
2.			26 pontos	
	2.1.	5 pontos		
	2.2.	9 pontos		
	2.3.	12 pontos		
	2.3.1. 4 pontos			
	2.3.2. 8 pontos			
3.			32 pontos	
•	3.1.	6 pontos	0_ po00	
	3.2.	6 pontos		
	3.3.	12 pontos		
	3.4.	8 pontos		
4		·	20	
4.	4.1.	11 pontos	30 pontos	
	4.2.	13 pontos		
	4.3.	6 pontos		
	7.0.	о роткоз		
	III			30 pontos
1.			16 pontos	
2.			7 pontos	
3.			7 pontos	
			-	
	TOTAL			200 pontos

EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais – Agrupamentos 1 e 2

Duração da prova: 120 minutos 1.ª FASE 2003 2.ª CHAMADA

PROVA ESCRITA DE QUÍMICA

COTAÇÕES I 60 pontos 1. 10 pontos 2. 10 pontos 3. 10 pontos 4. 10 pontos 10 pontos 5. 6. 10 pontos II 110 pontos 1. 22 pontos 1.1. 2 pontos 1.2. 7 pontos 1.3. 7 pontos 1.4. 6 pontos 2. 26 pontos 2.1. 5 pontos 9 pontos 2.2. 2.3. 12 pontos **2.3.1.** 4 pontos **2.3.2.** 8 pontos 32 pontos 3. 3.1. 6 pontos 3.2. 6 pontos 3.3. 12 pontos 8 pontos 3.4. 30 pontos 4. 4.1. 11 pontos 13 pontos 4.2. 6 pontos 4.3. III 30 pontos 1. 16 pontos 2. 7 pontos 3. 7 pontos TOTAL 200 pontos

V.S.F.F.

142/C/1

CRITÉRIOS DE CLASSIFICAÇÃO

Os critérios de classificação, quer gerais quer específicos, em nenhuma circunstância podem ser alterados, nomeadamente quanto à subdivisão de cotações parcelares.

Critérios Gerais

- A sequência de resolução apresentada para cada item deve ser interpretada como uma das sequências possíveis. Deverá ser atribuída a mesma cotação se, em alternativa, for apresentada outra, igualmente correcta.
- As cotações parcelares só deverão ser tomadas em consideração quando a resolução não estiver totalmente correcta.
- Nos itens de escolha múltipla, a indicação de mais do que uma alternativa implicará a cotação de zero pontos para o item em que tal se verifique.
- Nas respostas abertas, se o examinando responder mais do que uma vez a um mesmo item, sem eliminar clara e inequivocamente a(s) resposta(s) que considerar incorrecta(s), ser-lhe-á cotada a resposta que deu em primeiro lugar.
- Se a resolução de um item apresentar erro exclusivamente imputável à resolução numérica do item anterior, deverá atribuir-se ao item em questão a cotação integral.
- Se a resolução de um item apresentar erro(s) nos resultados das operações matemáticas, terá a penalização de um ponto.
- A ausência de unidades ou a indicação de unidades incorrectas, no resultado final, terá a penalização de um ponto.
- Na escrita de qualquer equação química, será atribuída a cotação de zero pontos se alguma das espécies químicas intervenientes estiver incorrecta em função da reacção química em causa, assim como se a equação estiver estequiometricamente errada.

Critérios Específicos

I

VERSÃO 1	VERSÃO 2		
1. (B)	(D)		10 pontos
2. (A)	(C)		10 pontos
3. (D)	(E)		10 pontos
4. (D)	(B)		10 pontos
5. (E)	(A)		10 pontos
6. (B)	(D)		10 pontos
		A transportar	60 pontos

		Transporte		 -	. 60 pontos
		II			
1.					22 pontos
	1.1.			2 pontos	
		Igual número de electrões de valência.		_ po	
	1.2.			7 pontos	
		Flúor ($_9$ F) – 72 pm		. рошос	
		Sódio (₁₁ Na) – 186 pm Magnésio (₁₂ Mg) – 160 pm			
	4.0			7	
	1.3.	Flúor (₉ F) – 1680 kJ mol ⁻¹		7 pontos	
		Magnésio ($_{12}$ Mg) – 738 kJ mol $^{-1}$ Cálcio ($_{20}$ Ca) – 590 kJ mol $^{-1}$			
		Calcio (20Ca) – 590 kJ moi			
	1.4.	Reconhecer que são iões isoelectrónicos		6 pontos	
		Relacionar o raio iónico com a carga nuclear			
		em iões isoelectrónicos	3 pontos		
2.					26 pontos
۷.					26 pontos
	2.1.	Determinar o valor de $n(PbC\ell_2)$		5 pontos	
			2 pontos		
		$n \text{ (PbC}\ell_2) = \frac{0.167}{278.1} \text{ mol} = 6.00 \times 10^{-4} \text{ mol}$			
		Reduzir V (solução) a dm ³	1 ponto		
		Verificar o valor de [PbC ℓ_2]	2 pontos		

A transportar		108 pontos
$Q < K_s \Rightarrow$ solução não saturada		
Justificar o facto de ser uma solução não saturada	2 pontos	
$Q = 8,64 \times 10^{-7}$		
Determinar o valor de Q	1 ponto	
$Q = [Pb^{2+}] \times [C\ell^{-}]^{2}$		
Identificar a expressão do quociente de reacção	2 pontos	
$[C\ell^-] = 1,20 \times 10^{-2} \text{ mol dm}^{-3} \dots 2 \text{ pontos}$		
$[Pb^{2+}] = 6,00 \times 10^{-3} \text{ mol dm}^{-3} \dots 2 \text{ pontos}$		
Determinar o valor de $[Pb^{2+}]$ e de $[C\ell^{-}]$	4 pontos	
		9 pontos
0,100		
$[PbC\ell_2] = \frac{6.00 \times 10^{-4}}{0.100} \text{ mol dm}^{-3} = 6.00 \times 10^{-3} \text{ mol dm}^{-3}$		
Verificar o valor de [PbC ℓ_2]	2 pontos	
, , ,	0	
V (solução) = 0,100 dm ³		

2.2.

V.S.F.F.

```
Transporte ...... 108 pontos
   2.3. 12 pontos
        2.3.1.
              K_s = [Pb^{2+}]_e \times [C\ell^{-}]_e^2
               [C\ell^-]_e = \sqrt{\frac{2.4 \times 10^{-4}}{6.00 \times 10^{-3}}} \text{ mol dm}^{-3} =
                = 2.0 \times 10^{-1} \text{ mol dm}^{-1}
        2.3.2.
                                                                  8 pontos
               Determinar n_{\text{total}} (C\ell^-) 2 pontos
               n_{\text{total}} (C\ell^{-}) = 2.0 \times 10^{-1} \times 0.100 \text{ mol} =
                = 2.0 \times 10^{-2} \text{ mol}
               Determinar n_1 (C\ell^-) de PbC\ell_2(aq) ......
                                                       4 pontos
                n_1 (C\ell^-) = 1,20 \times 10^{-2} \times 0,100 \text{ mol} =
                = 1.20 \times 10^{-3} \text{ mol}
               Determinar n_2 (C\ell^-) de NaC\ell(s).........
                n_2 (C\ell^-) = n_{\text{total}} (C\ell^-) - n_1 (C\ell^-) =
= 1,88 × 10<sup>-2</sup> mol
3.
                      .....
        CH_2C\ell COOH(aq) + H_2O(\ell) \implies CH_2C\ell COO^{-}(aq) + H_3O^{+}(aq)
                                    ou
        CH_2C\ell COOH(aq) \implies CH_2C\ell COO^-(aq) + H^+(aq)
        • Penalizar com 1 ponto a ausência e/ou incorrecção de um ou mais estados físicos.

    Penalizar com 1 ponto a utilização de → em vez de ⇄ .

   3.2.
                                                                             6 pontos
        Determinar a variação da concentração, Δc,
          de [CH<sub>2</sub>CℓCOOH] .....
        \Delta c = 1.00 \times 10^{-2} \times 0.311 \text{ mol dm}^{-3} = 3.11 \times 10^{-3} \text{ mol dm}^{-3}
        Verificar o valor de [CH<sub>2</sub>CℓCOOH]<sub>e</sub> .....
                                                                  2 pontos
        [CH_2C\ell COOH]_e = (1,00 \times 10^{-2} - \Delta c) \text{ mol dm}^{-3} = 6,89 \times 10^{-3} \text{ mol dm}^{-3}
   Determinar o valor de [H<sub>3</sub>O<sup>+</sup>]<sub>e</sub>.....
         [H_3O^+]_e = 1,00 \times 10^{-2} \times 0,311 \text{ mol dm}^{-3} = 3,11 \times 10^{-3} \text{ mol dm}^{-3}
        Relacionar [H_3O^{\dagger}]_e com [OH^{-}]_e .....
                                                                  3 pontos
          K_{\rm w} = [{\rm H_3O^{\dagger}}]_{\rm e} \times [{\rm OH^{-}}]_{\rm e}
        Determinar o valor de [OH<sup>-</sup>]<sub>e</sub> .....
         [OH^{-}]_{e} = \frac{1.0 \times 10^{-14}}{3.11 \times 10^{-3}} \text{ mol dm}^{-3} = 3.2 \times 10^{-12} \text{ mol dm}^{-3}
        Identificar a expressão pOH = - log [OH<sup>-</sup>]<sub>e</sub>.....
                                                                  3 pontos
        Verificar o valor de pOH.....
                                                                  2 pontos
         [OH^{-}]_{e} = 3.2 \times 10^{-12} \text{ mol dm}^{-3} \Rightarrow pOH = 11.5
                                   A transportar ...... 140 pontos
```

	3.4.			8 pontos	
		Escrever a expressão de K_a (CH ₂ C ℓ COOH)		o pomeo	
		Identificar o valor de $[CH_2C\ell COO^-]_e$ e de $[H_3O^+]_e$	2 pontos		
		Determinar o valor de K_a (CH ₂ C ℓ COOH)	3 pontos		
4.					30 pontos
	4.1.			11 pontos	
		Determinar os números de oxidação nos reagentes		·	
		Determinar os números de oxidação nos produtos	4 pontos		
		com o conceito de redução	3 pontos		
	4.2.			13 pontos	
		Escrever a equação da outra semi–reacção $NO_2^-(aq) + H_2O(\ell) \longrightarrow NO_3^-(aq) + 2 H^+(aq) + 2 e^-$	5 pontos		
		Transformar a equação para igualar o número de electrões nas duas equações	3 pontos		
		Escrever a equação global da reacção	5 pontos		
		 Não penalizar a ausência e/ou incorrecção de um ou mais estados físico Não penalizar o uso de seta em vez de →. 	os.		

Transporte			170 pontos
4.3.		6 pontos	
Relacionar o sentido em que a reacção é mais extensa com o valor de ΔE^0	3 pontos		
Justificar que E^0 (NO ₃ / NO ₂) < 1,33 V	3 pontos		
Relacionar o sentido em que a reacção é mais extensa com o poder oxidante de $\text{Cr}_2\text{O}_7^{2-}$ e NO_3^-	3 pontos		
Relacionar o poder oxidante com o valor de E^0	3 pontos		
Relacionar o sentido em que a reacção é mais extensa com o poder redutor de Cr^{3+} e NO_2^-	3 pontos		
Relacionar o poder redutor com o valor de E^0	3 pontos		
III			
Converter °C em K	2 pontos 2 pontos 2 pontos	6 pontos	16 pontos
A 50 °C, $V_2 = (51.8 + 3.5) \text{ cm}^3 = 55.3 \text{ cm}^3$	2 pontos 2 pontos	4 pontos	
$\frac{V_1}{T_1} = 0,171 \text{ cm}^3 \text{ K}^{-1} \frac{V_2}{T_2} = 0,171 \text{ cm}^3 \text{ K}^{-1} \frac{V_3}{T_3} = 0,171 \text{ cm}^3$ • Não penalizar a ausência de cm³ K ⁻¹ nesta relação. • Penalizar um ponto se for apresentado apenas um dos cálculos $\frac{V_i}{T_i}$			

A transportar 186 pontos

1.

Transporte		186 pontos
2. Gráfico (A)		7 pontos
3		7 pontos
Identificar a expressão pV = nRT		
Converter cm ³ em dm ³	1 ponto	
Determinar o valor de n (CO ₂)	2 pontos	
Determinar o valor de m (CO ₂)	2 pontos	
TOTAL		200 pontos

GRELHA DE CLASSIFICAÇÃO - QUÍMICA (Cód. 142)

EXAMES NACIONAIS DO ENSINO SECUNDÁRIO, 2003 – 1.ª Fase, 2.ª Chamada

₹.	×	6											
TOTAL	PRO	(200)											
	ī	(30)											Ì
Grupo III	_ن	(7)											
Grup	2.	(7)											
_. 5	1.	(16)											
	(110)												
	4.3.	(9)											
	4.2.	(13)											
	4.1.	(11)											
	3.4.	(8)											\square
	3.3.	(12)											\Box
	3.2.	(9)											\Box
11 00	3.1.	(9)											
Grupo II	2.3.2.	(8)											
	2.3.1. 2.3.2.	(4)											
	2.2.	(6)											
	2.1.	(2)											
	1.4.	(9)											
	1.3.	(7)											
	1.2.	(7)											
	1.1.	(2)											
	T_{I}	(60)											
	6.	(10)											
Ιο	5.	(10)											
Grupo I	4.	(10)											
\lfloor	3.	(10)											
	2.	(10)											
	+	(10)											
Númoro	Convencional da Prova												
opito	Confidencial da Escola												

O Professor Classificador

Data_