EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

1998

1.* FASE

1.* CHAMADA

VERSÃO 1

PROVA ESCRITA DE FÍSICA

Utilize para o módulo da aceleração da gravidade $g = 10 \text{ m s}^{-2}$

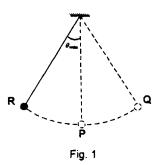
1

- As seis questões deste grupo são de escolha múltipla.
- Para cada uma das seis questões deste grupo são indicadas cinco hipóteses A, B, C, D e E das quais só uma está correcta.
- Escreva, na sua folha de prova, a letra correspondente à hipótese que seleccionar para cada questão.
- Não apresente cálculos.
- 1. A velocidade de uma passadeira rolante em relação à Terra é $\vec{v}_{p,T} = 3.0 \ \vec{e}_x$ (m s⁻¹). Um utilizador desta passadeira move-se sobre ela com uma velocidade em relação à Terra $\vec{v}_{u,T} = 1.0 \ \vec{e}_x$ (m s⁻¹). Nestas condições, a velocidade $\vec{v}_{u,p}$ em m s⁻¹ do utilizador em relação à passadeira rolante é:

(A)
$$\vec{v}_{u,p} = 2.0 \, \vec{e}_x$$

(B)
$$\vec{v}_{u,p} = 3.0 \ \vec{e}_x$$

(C)
$$\vec{v}_{u,p} = \vec{0}$$


(D)
$$\vec{v}_{u,p} = -1.0 \ \vec{e}_x$$

(E)
$$\vec{v}_{u,p} = -2.0 \vec{e}_x$$

2. A figura 1 representa um pêndulo gravítico simples. Os pontos R e Q assinalam as posições extremas do pêndulo durante o movimento. O ponto P indica a posição em que o fio tem a direcção vertical.

Desprezando as forças resistentes, podemos afirmar:

- (A) O módulo da aceleração do pêndulo é zero no ponto R.
- (B) O módulo da componente tangencial da aceleração do pêndulo é máximo, no ponto Q.
- (C) O módulo da velocidade do pêndulo é mínimo, no ponto P.
- (D) O módulo da resultante das forças que actuam no pêndulo é zero, no ponto P.
- (E) O movimento do pêndulo é uniformemente variado, de R a P.

3. Um disco de raio R pode rodar, com atrito desprezável, em torno de um eixo fixo, horizontal, perpendicular às faces planas do disco e que passa pelo seu centro.

Enrola-se no disco um fio inextensível e de massa desprezável e liga-se a sua extremidade livre a um corpo de massa *m* que é em seguida abandonado.

Considere que não existe escorregamento do fio sobre o disco.

Designe por / o momento de inércia do disco em relação ao eixo de rotação.

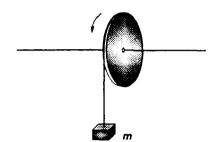
A expressão que permite calcular o módulo da tensão no fio, em função de m, R, g e I, é:

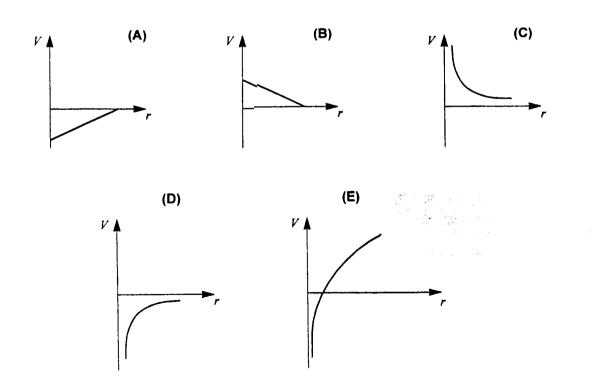
(A)
$$T = \frac{I m g}{I - m R^2}$$

(B)
$$T = \frac{I m g}{m R^2 + I}$$

(C)
$$T = \frac{m R^2 + I}{I m g}$$

(D)
$$T = \frac{m R^2 - I}{I m g}$$

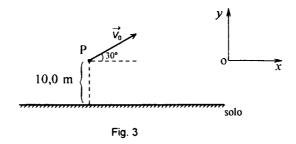



Fig. 2

4. Um certo corpo é abandonado no fundo de um recipiente que contém água e sobe até ficar em equilibrio, com metade do seu volume imerso.

Durante a subida e enquanto o corpo está totalmente imerso na água, podemos afirmar:

- (A) O módulo da impulsão é igual ao módulo do peso do corpo e o movimento é uniforme.
- (B) O módulo da impulsão é menor do que o módulo do peso do corpo e o movimento é uniformemente retardado.
- (C) O módulo da impulsão é maior do que o módulo do peso do corpo e o movimento é uniformemente acelerado.
- (D) O módulo da impulsão vai diminuindo, à medida que o corpo sobe, até igualar metade do módulo do peso do corpo.
- (E) O módulo da impulsão vai diminuindo, à medida que o corpo sobe, até igualar o módulo do peso do corpo.


- 5. Considere o sistema *Terra* + *Lua*. Admita que a órbita descrita pela Lua em torno da Terra é circular. Nestas condições, podemos afirmar:
 - (A) O momento linear da Lua mantém-se constante e a sua energia cinética varia.
 - (B) A distância entre o centro de massa do sistema *Terra* + *Lua* e o centro de massa da Terra é variável.
 - (C) O potencial gravítico terrestre num ponto da órbita da Lua é positivo.
 - (D) O módulo do campo gravítico criado pela Terra é igual ao módulo do campo gravítico criado pela Lua em qualquer ponto equidistante dos dois planetas.
 - (E) A energia potencial gravítica do sistema Terra + Lua mantém-se constante.
- 6. Indique qual dos gráficos representa o valor do potencial eléctrico V num ponto do campo eléctrico criado por uma carga pontual negativa, em função da distância r do ponto à carga criadora do campo.

Nas questões deste grupo apresente todos os cálculos que efectuar.

1. Um projéctil de massa 500 g é lançado com velocidade vo de um ponto P que dista 10,0 m do solo, como indica a figura 3. A velocidade inicial faz um ângulo de 30° com a direcção horizontal do solo. A energia cinética mínima do projéctil durante o movimento é 10 J. Despreze as forças resistentes.

$$\sin 30^{\circ} = 0.50$$

 $\cos 30^{\circ} = 0.87$

1.1. Justifique a seguinte afirmação verdadeira:

Durante o movimento do projéctil a componente horizontal da velocidade mantém-se constante.

- 1.2. Determine a velocidade inicial do projéctil.
- 1.3. Calcule a altura máxima, em relação ao solo, atingida pelo projéctil.
 Se não resolveu 1.2. considere 7,0 m s⁻¹ o módulo da velocidade inicial do projéctil.
- 2. Considere um pequeno corpo A de massa M suspenso por um fio inextensível e de massa desprezável, como indica a figura 4. O corpo A pode mover-se no plano vertical. A distância entre o centro de massa do corpo A e o ponto O é l.
 - 2.1. Pretende-se que o corpo A dê uma volta completa. Determine, em função de g e l, o valor mínimo do módulo da velocidade do corpo A ao atingir a posição mais elevada da trajectória.

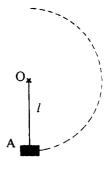


Fig. 4

2.2. Observe a figura 5.

Um projectil de massa m e velocidade horizontal \vec{v}_0 colide com o corpo A, inicialmente em repouso, ficando nele incrustado.

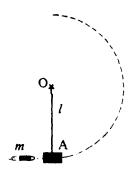
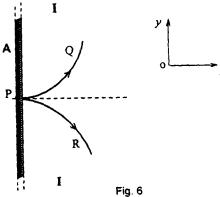


Fig. 5

- **2.2.1.** Determine, em função de M, m e \vec{v}_0 , a velocidade do sistema corpo A + projectil logo após a colisão.
- **2.2.2.** Determine, em função de m, M, g e l, o valor mínimo do módulo da velocidade \vec{v}_0 do projectil de modo a que o sistema consiga descrever a trajectória circular no plano vertical. Justifique.

Considere desprezáveis todas as forças resistentes.


3. Observe a figura 6.

Na região I existe apenas um campo magnético uniforme $\vec{B} = -1.5 \times 10^{-3} \; \vec{e}_z$ (T).

Através do orifício P da placa A podem penetrar no campo magnético quer protões, quer electrões, com igual velocidade $\vec{v} = 6.0 \times 10^6 \ \vec{e_x} \ (\text{m s}^{-1})$.

Na figura 6 estão ainda representadas, por Q e R, possíveis trajectórias de um feixe de electrões e de um feixe de protões.

e (carga elementar) = 1,6 × 10⁻¹⁹ C m_p (massa do protão) = 1,7 × 10⁻²⁷ kg m_e (massa do electrão) = 9,1 × 10⁻³¹ kg

- 3.1. Qual das trajectórias Q ou R diz respeito ao movimento do feixe de protões? Justifique.
- 3.2. Qual das trajectórias, dos electrões ou dos protões, tem menor raio? Justifique.
- 3.3. Em relação ao ponto P, quais as coordenadas do ponto em que o feixe de electrões embate na placa?

Nas questões deste grupo apresente todos os cálculos que efectuar.

Um grupo de alunos, numa aula experimental, tinha como objectivo determinar o coeficiente de atrito estático para um par de materiais.

Usaram o seguinte material:

- transferidor
- placa de madeira
- livro de Física

Estudaram a escala do transferidor de forma a poderem fazer as leituras necessárias.

Colocaram o livro de Física sobre a placa de madeira, disposta horizontalmente em cima de uma mesa. Foram aumentando a inclinação da placa de madeira até o livro ficar na iminência de se mover, como indica a figura 7.

Fig. 7

Nesse instante, mediram o ângulo que o plano da placa de madeira fazia com o tampo horizontal da mesa.

Repetiram a experiência três vezes e registaram numa tabela os valores obtidos para o ângulo $\theta_{máx}$.

 $\sin 17^{\circ} = 0.292$ $\cos 17^{\circ} = 0.956$

	$ heta_{máx}$
1.ª Leitura	17°
2.ª Leitura	18°
3.ª Leitura	16°

- 1. Passe a figura 7 para a sua folha de prova e desenhe, devidamente legendado, o diagrama das forças que actuam no livro, no instante em que foi medido o ângulo $\theta_{\text{máx}}$. Tenha em atenção a direcção, o sentido e o tamanho relativo dos vectores que representar.
- 2. Prove que o coeficiente de atrito estático, relativo ao par de materiais em contacto, é função exclusiva do ângulo $\theta_{máx}$.
- 3. Calcule, utilizando os valores da tabela, o valor médio do coeficiente de atrito estático relativo ao par de materiais em contacto.

FIM

EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)
Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

1998

1.º FASE

1.º CHAMADA

PROVA ESCRITA DE FÍSICA

_	FROVA ESCRITA DE 11			
	COTAÇÕES			
	I			•
3. 4.			10 pontos 10 pontos 10 pontos 10 pontos 10 pontos	
				60 pontos
	II			
1. 2.	1.1	10 pontos 15 pontos 10 pontos	35 pontos	
	2.2.1.	7 pontos		
3.	2.2.2.	18 pontos	35 pontos	
•	3.1	16 pontos 16 pontos 8 pontos		
			40 pontos	
				110 pontos
	ш			
_		······	9 pontos 12 pontos 9 pontos	
				30 pontos
	TOTAL			200 pontos
				V.S.F.F.

CRITÉRIOS DE CLASSIFICAÇÃO

Critérios Gerais

- A sequência de resolução sugerida para cada item deve ser interpretada como uma das sequências possíveis. Deverá ser atribuída a mesma cotação se, em alternativa, for apresentada outra igualmente correcta.
- As cotações parcelares só deverão ser tomadas em consideração quando a resolução não estiver totalmente correcta.
- Se a resolução de um item apresentar erro exclusivamente imputável à resolução do item anterior, deverá atribuir-se, ao item em questão, a cotação integral.
- A ausência de unidades ou a indicação de unidades incorrectas, no resultado final, terá a penalização de um ponto.
- Os erros de cálculo terão, no máximo, a penalização de 10% da cotação total do item.

Critérios Específicos

Onten	os Especiii	COS		1
VE	RSÃO 1	VERSÃO 2	ĭ	
1	. E	G	10 pontos	
2	. B	I	10 pontos	
3.	. B	H	10 pontos	
			10 pontos	
6.	. D	G	10 pontos	
Se o ex		transcrever letras co	que uma hipótese, atribuir a cotação zero. rrespondentes às duas versões, a cotação	60 pontos
			п	
-	pontos)			10 pontos
1.1.	Princípio (da independência do	s movimentos segundo a direcção hori- il lançado obliquamente	io pontos
			que não actuam forças na direcção hori-	-
ou				
			ção horizontal, do movimento do projectil 2 pontos	
	$V_x = V_0 \cos \theta$		que v_0 e θ são constantes	
	Conclusa	o. V _x e constante por	que v ₀ e 8 sao constantes o pontos	
1.2				15 pontos
	Cálculo d	o módulo da velocida	ade mínima 3 pontos	
			a como a velocidade no ponto mais alto	
			componente horizontal $v_x = v_\theta \cos \theta$ 5 pontos	
	Cálculo d	e <i>v</i> _{0x}	2 pontos	
	Cálculo d	e v _{0y}	2 pontos	
	\vec{v}_0 = 6,3 \vec{e}	$_{x}$ + 3,6 \vec{e}_{y} (m s ⁻¹)	3 pontos	
			A transportar	85 pontos

	Transporte	85 pontos
1.3.		10 pontos
	Cálculo do instante em que $v_y = 0$	5
	Substituição na equação paramétrica y e obtenção de h_m = 11 m 5 pontos	5
ou	Apliagaão do Lai de Consequente do Francia Manánico de sistema mais	
	Aplicação da Lei da Conservação da Energia Mecânica do sistema, pois a força que actua é conservativa	s
	Cálculo de $h_m = 11 \text{ m}$ 5 ponto	
	Se o examinando não considerar a altura inicial descontar 3 pontos.	
2. (35	pontos)	
2.1.		
	$\vec{F}_{g} + \vec{T} = \vec{F}_{n}$ 2 ponto	5
	Identificar a velocidade mínima no ponto mais alto como a velocidade	_
	que corresponde à tensão do fio ser nula, $\vec{F}_g = \vec{F}_n$	
	Substituição e determinação de $v_{\min} = \sqrt{l g}$	5
2.2.		25 pontos
	2.2.1. 7 ponto	s
	Aplicação da Lei da Conservação do Momento Linear,	
	na direcção horizontal 2 pontos	
	Determinação de $\vec{v} = \frac{m}{M+m} \vec{v}_0$	
	***	e
	2.2.2. 18 ponto	3
	Justificação da aplicação da Lei da Conservação da Energia Mecânica do sistema	
	$\frac{1}{2}(M+m) v^2 = 2(M+m) g l + \frac{1}{2}(M+m) g l (1+2+2) 5 \text{ pontos}$	
	Determinação de $v = \sqrt{5lg}$	
	Determinação de $v_0 = \frac{M+m}{m} \sqrt{5lg}$	
•) pontos)	
3.1		
	$\vec{F}_{\rm m} = q \vec{\mathbf{v}} \times \vec{\mathbf{B}}$	
	$\vec{F}_{m} = q v \vec{e}_{x} \times \left(-B \vec{e}_{z}\right)$	s
	$\vec{F}_{m} = qvB \vec{e}_{y}$ 5 ponto	os
	Trajectória Q 5 ponto	os
	A transportar	146 pontos
		=

		146 ponto
3.2.		16 ponto
$\vec{F}_{m} = \vec{F}_{n}$	4 pontos	
Substituição $q v B = \frac{mv^2}{r}$	4 pontos	
Concluir que sendo v , B , q constantes, à menor massa corresponde o		
menor raio	•	
Trajectória dos electrões	3 pontos	
3.3.		8 ponto
Substituição dos valores em $r = \frac{mv}{qB}$	4 pontos	
x = 0.0 cm y = -4.6 cm z = 0.0 cm	4 pontos	
Se o examinando não fez coincidir a posição P com a origem do		r'
referencial, aceitar outros valores das coordenadas, desde que correctas.		
111		
		9 ponto
1		
→ \ →		
Ro \ Fa.		
$R_n \mid F_a$ (3 + 3 + 3)	9 pontos	
R_n F_a $(3+3+3)$	9 pontos	
θ_{max} (3 + 3 + 3)	9 pontos	
$\theta_{ ext{max}}$ $\phi_{ ext{F}}$		12 ponto
$ \sqrt{\vec{F_{\rm g}}} $		12 ponto
$ \sqrt{\vec{F_{\mathrm{g}}}} $	4 pontos	12 ponto
$ \begin{array}{c} \overrightarrow{\theta_{\text{max}}} \\ \downarrow \overrightarrow{F_{g}} \\ \end{array} $ $ \sum \overrightarrow{F} = \overrightarrow{0} \begin{cases} F_{a} = \mu R_{n}, \\ mg \sin \theta_{\text{máx}} = \mu mg \cos \theta_{\text{máx}} \end{cases} $	4 pontos 4 pontos	12 ponto
$ \begin{array}{c} \overrightarrow{\theta_{\text{max}}} \\ \downarrow \overrightarrow{F_{g}} \\ \end{array} $ $ \sum \overrightarrow{F} = \overrightarrow{0} \begin{cases} F_{a} = \mu R_{n}, \\ mg \sin \theta_{\text{máx}} = \mu mg \cos \theta_{\text{máx}} \end{cases} $	4 pontos 4 pontos	12 ponto
$ \begin{array}{c} \overrightarrow{F}_{\text{max}} \\ \overrightarrow{F}_{g} \end{array} $ $ \Sigma \vec{F} = \vec{0} \begin{cases} F_{a} = \mu R_{n}, \\ mg \sin \theta_{\text{máx}} = \mu mg \cos \theta_{\text{máx}} \end{cases} $	4 pontos 4 pontos 4 pontos	
$ \begin{array}{c} \overrightarrow{\theta_{\text{max}}} \\ \overrightarrow{F_{g}} \end{array} $ $ \begin{array}{c} \overrightarrow{F_{g}} \\ \overrightarrow{F_{g}} \\ \end{array} $ $ \begin{array}{c} \overrightarrow{F_{g}} \\ \overrightarrow{mg} \sin \theta_{\text{max}} = \mu m g \cos \theta_{\text{max}} \end{array} $ $ \mu = \tan \theta_{\text{max}} $ $ \theta_{\text{max}} = 17^{\circ} $	4 pontos 4 pontos 4 pontos 3 pontos	
$ \begin{array}{c} $	4 pontos 4 pontos 4 pontos 3 pontos 3 pontos	
$ \int \vec{F} = \vec{0} \qquad \begin{cases} F_a = \mu R_n, \\ mg \sin \theta_{\text{máx}} = \mu mg \cos \theta_{\text{máx}} \end{cases} $ $ \mu = \tan \theta_{\text{máx}} $ $ \theta_{\text{máx}} = 17^{\circ} $	4 pontos 4 pontos 4 pontos 3 pontos 3 pontos	