ENSINO SECUNDÁRIO

12.º ANO DE ESCOLARIDADE — VIA DE ENSINO (1.º e 5.º CURSOS)

Duração da prova: 1h e 30min

1992

1.ª FASE

1.ª CHAMADA

PROVA ESCRITA DE FÍSICA

 $q = 10 \text{ ms}^{-2}$

 $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$

 $\sin 37^{\circ} = \cos 53^{\circ} = 0.6$

 $\sin 60^{\circ} = \cos 30^{\circ} = 0.87$

 $\cos 37^{\circ} = \sin 53^{\circ} = 0.8$

 $\cos 60^{\circ} = \sin 30^{\circ} = 0.5$

- Um rapaz dispara um projéctil com velocidade vo de módulo 100 m s⁻¹ na direcção do alvo A e verifica que ele passa por um ponto B, situado abaixo e na vertical de A (Fig. 1). d = 240 m ≪ 3 3 ° Despreze os atritos.
 - 1.1. Determine a distância entre A e B.
 - 1.2. Determine a velocidade $\vec{v}_{\rm B}$ do projéctil guando passa por B .
- V₀

 Q

 Q

 C

Fig. 1

- 1.3. Indique, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - A Em condições de lançamento idênticas, um projéctil com massa superior teria atingido um ponto abaixo de B, na mesma vertical.
 - B Mantendo as restantes condições iniciais de lançamento e aumentando a velocidade do projéctil, esse teria passado por um ponto acima de B, mas nunca pelo ponto A.
- 2. Um disco com 30 cm de raio gira em torno do seu eixo, descrevendo 720 rotações por minuto. Num dado instante, aplicou-se tangencialmente uma força de módulo constante que reduziu a sua velocidade angular para metade, ao fim de 4,0 s . O momento de inércia do disco em relação ao seu eixo é 48 × 10⁻² kg m² . Determine, para o intervalo de tempo de 4,0 s :
 - 2.1. O módulo da aceleração angular do disco.
 - 2.2. O módulo da força \vec{F} .

3. Observe a figura 2.

A calha circular ABC está num plano vertical e tem 1,20 m de raio. O corpo M_1 , de massa 300 g desliza sem atrito ao longo da calha, passando por B com velocidade de módulo 2,0 m s⁻¹.

Ao atingir o plano horizontal, o corpo M_1 choca com outro M_2 com 200 g de massa, inicialmente em repouso. Após o choque, os dois corpos movem-se juntos, acabando por parar em E. Só existe atrito no trajecto DE. Determine:

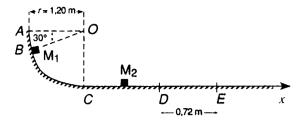
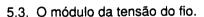



Fig. 2

- 3.1. O módulo da reacção da calha sobre M_1 quando passa por B.
- 3.2. A velocidade do conjunto $(M_1 + M_2)$ imediatamente após o choque.
- 3.3. O módulo da força de atrito que actua no conjunto, no trajecto DE.
- 4. Uma partícula P vibra com movimento harmónico simples de frequência 5,0 Hz e amplitude igual a 10 cm. O movimento desta partícula propaga-se num meio elástico, homogéneo e unidimensional, com velocidade de módulo 3,0 ms⁻¹.
 - 4.1. Escreva a equação da onda resultante.
 - 4.2. Determine, para um instante em que P se encontra na sua máxima elongação negativa, o módulo da velocidade de uma partícula Q do meio, que dista 15 cm de P.
 - 4.3. Qual a menor distância entre dois pontos do meio considerado, cuja diferença de fase é $\frac{3\pi}{2}$?
- 5. Duas placas electrizadas, A e B, estão dispostas verticalmente A e distam 30 cm uma da outra (fig. 3). A diferença de potencial entre as placas é 3000 V e $V_{\rm A}$ < $V_{\rm B}$. Uma pequena esfera C, de massa 2,0 g e portadora da carga q, está ligada a um fio ideal e isolante, constituindo um pêndulo em equilíbrio, nas condições da figura.

Determine:

- 5.1. O módulo do campo eléctrico existente entre as placas A e B
- 5.2. A carga da esfera C. (Se não resolveu 5.1., considere $|\vec{E}| = 3.0 \times 10^4 \, \text{V m}^{-1}$).

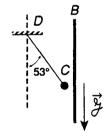


Fig. 3

- 6. Um balão com $5.0 \, \mathrm{m}^3$ de volume, cheio de oxigénio $(\mathrm{O_2})$ a $15 \, ^{\circ}\mathrm{C}$, mantém-se em equilíbrio no ar. A massa do balão vazio é $1.8 \, \mathrm{kg}$. A_{r} (O) = $16.0 \, \mathrm{c}$. Despreze a espessura das paredes do balão e considere a massa volúmica do ar envolvente igual a $1.2 \, \mathrm{kg} \, \mathrm{m}^{-3}$. Determine:
 - 6.1. A massa do gás contido no balão.
 - 6.2. A pressão do gás no seu interior. (Se não resolveu 6.1., considere que a massa de gás contido no balão é 3,8 kg .)

ENSINO SECUNDÁRIO 12.º ANO DE ESCOLARIDADE — VIA DE ENSINO (1.º e 5.º CURSOS)

Duração da prova: 1h e 30min

1.ª FASE

1992

1.ª CHAMADA

PROVA ESCRITA DE FÍSICA

	CRITÉRIOS DE CORRECÇÃO / COTAÇÕES				
1	A sequência de resolução apresentada para cada questão, nas páginas seguintes, deve ser inter-				
1.	pretada como correspondendo a uma das resoluções possíveis. Deverá ser atribuída a mesma cotação se, em alternativa, for apresentada outra resolução igualmente correcta.				
2.	Se a resolução de uma alínea apresenta erro exclusivamente imputável à resolução de uma alínea anterior, deverá atribuir-se, à alínea em questão, a cotação integral.				
3.	As cotações parcelares só deverão ser tomadas em consideração quando a resolução não estiver totalmente correcta.				
4.	A ausência de unidades ou a indicação de unidades incorrectas, relativamente à grandeza em questão, no resultado final , terá a penalização de um ponto.				
	Não deverá haver penalização, como é óbvio, caso o aluno indique unidades equivalentes às da				

Não deverá haver penalização, como é óbvio, caso o aluno indique unidades equivalentes às da resolução proposta.

V.S.F.F.

1. (38 pontos)

1.1.		16 pontos
	Determinação do tempo de voo	
	Determinação de y _A	
	Determinação de $\overline{AB} = y_A - y_B$ 8 pontos	
1.2.	$\vec{v}_{B} = 8 \times 10 \ \vec{u}_{x} + 3.0 \times 10 \ \vec{u}_{y} \ (\text{m s}^{-1})$	9 pontos
1.3.		13 pontos

A - Falsa Justificação	 2 pontos 4 pontos	•
B - Verdadeira Justificação	 2 pontos · 5 pontos	

2. (28 pontos)

2.1.		14 pontos
	Determinação de $\ \omega_0$ e de $\ \omega_4$;
	Determinação de $ \vec{\alpha} $; $ \vec{\alpha} = 3\pi \text{ rad s}^{-2}$	
2.2.	Determinação em F; (F = 15N)	14 pontos

3. (42 pontos)

3.2.
$$E_{m,B} = E_{m,C}$$
 2 pontos

Determinação de h_B 3 pontos

Determinação de v_C 6 pontos

 $\vec{p_i} = \vec{p_f}$ e determinação de $\vec{v_f}$ do conjunto $[\vec{v_f} = 2.4 \ \vec{u_x} \ (\text{m s}^{-1}] \}$ 9 pontos

(incluem-se 3 pontos para a notação vectorial) 10 pontos

 $W_{Fa} = \Delta E_m$ 3 pontos

Cálculo de F_a ; $(F_a = 2,0 \text{ N})$ 7 pontos

4. (30 pontos)

4.2. No instante considerado,
$$y_Q = 0$$
 6 pontos Determinação do módulo da velocidade pedida ($v_Q = 3.1 \text{ m s}^{-1}$) 9 pontos

4.3. Determinação de
$$d$$
; $(d = 0.45 \text{ m})$ 5 pontos

5. (28 pontos)

V.S.F.F.

6. (34 pontos)