ENSINO SECUNDÁRIO

12.° ANO DE ESCOLARIDADE — VIA DE ENSINO

(1.º e 5.º CURSOS)

Duração da prova: 1h e 30m

1990

1.a FASE

1.ª CHAMADA

PROVA ESCRITA DE QUÍMICA

Nos exercícios que envolvam cálculos numéricos, é obrigatória a sua apresentação.

DADOS QUE PODERÃO SER NECESSÁRIOS

Números atómicos e massas atómicas

 $E^{0} (2H_{2}O \rightarrow H_{2} + 2 OH^{-}) = -0.83 V$

₁ H = 1,008 ₂ H	le = 4,003	₅ B = 10,81	₆ C =	12,01			
$_{7}N = 14,01$ 80) = 16,00	9F = 19,00	₁₀ Ne =	20,18			
$_{11}Na = 22,99$ $_{16}S$	32,06	$_{17}C\ell = 35,45$	$_{18}Ar =$	39,95			
$_{19}K = 39,10$ $_{26}F$	e = 55,85	$_{29}$ Cu = 63,54	₃₅ Br =	79,90 $_{56}Ba = 137,3$	3		
Constante dos gases ide	ais		$\dots R = 8,2$	$ imes$ 10 $^{-2}$ atm dm 3 K $^{-1}$ mol $^{-1}$	1		
Constante de Planck		•••••	$\dots h = 6,6$	$ imes$ 10 $^{-34}$ J s			
Constante de Avogadro			$\dots N = 6.02$	$2 \times 10^{23} \mathrm{mol}^{-1}$			
Velocidade da luz no vaz	zio		c = 3.00	$0 \times 10^{8} \mathrm{m \ s^{-1}}$			
Electronegatividades							
H → 2,20 C	→ 2,55	N → 3,04	O → 3,44	Cℓ → 3,16			
Produto iónico da água ((25° C)		K _w = 1,0>	< 10 ⁻¹⁴			
Constantes de ionização							
Ácido fluorídrico, HF			$\dots K_a = 6.8$	< 10 ⁻⁴			
lão carbonato, CO_3^{2-}							
Amoníaco $K_b = 1.8 \times 10^{-5}$							
Produto de solubilidade do fluoreto de bário, Ba F_2 (25° C) $K_s = 1.0 \times 10^{-6}$							
Os restantes sais que ap	parecem citado	s na prova podem c	onsiderar-se s	solúveis.			
Potenciais normais de re	edução:						
$E^0 (S_2 O_8^{2-} \rightarrow 2SO_4^{2-})$	= 2,01 V						
E^{0} (O ₂ + 4H ⁺ \rightarrow 2H ₂ O)	= 1,23 V						
E^0 (Fe ³⁺ \rightarrow Fe ²⁺)	= 0,77 V						
E^0 (Cu ²⁺ \rightarrow Cu)	•						
E^{0} (Fe ²⁺ \rightarrow Fe)	= -0,44 V						

V.S.F.F.

		•	
			_

- 1. Classifique como verdadeiras ou falsas as afirmações seguintes:
 - A A molécula CH₄ é apolar, enquanto a molécula CH₂ Cℓ₂ é polar.
 - B Num átomo, cada função de onda é caracterizada por quatro números quânticos.
 - C Os átomos cujas configurações electrónicas são [Ne] $3s^2$ $3p^5$ e [Ar] $3d^{10}$ $4s^2$ $4p^5$ pertencem ao mesmo grupo da tabela periódica.
 - D A espécie química BH₃ é um ácido de Lewis.
 - E Quando um átomo de hidrogénio excitado volta ao estado fundamental, é emitido um fotão de radiação visível.
- 2. Considere as seguintes espécies químicas:

$$U - CH_3CH_2CONH_2$$
 $V - CHBr = CHC\ell$

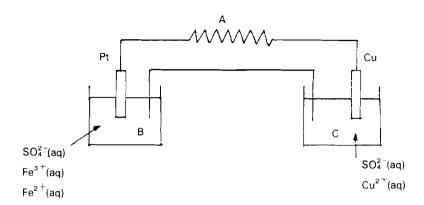
$$Q - NO_3$$

- 2.1. Escreva as fórmulas de estrutura de Y, Z e W.
- 2.2. A molécula V contém uma dupla ligação carbono carbono; daí resulta que apresenta dois isómeros. Escreva os nomes e as fórmulas de estrutura desses dois isómeros. Classifique o tipo de isomeria.
- 2.3. Escolha, de entre os compostos apresentados, um que tenha a função cetona e outro que seja isómero dessa cetona.
- 2.4. Escreva o nome da substância R.
- 2.5. Com base na regra do octeto, deduza a fórmula de estrutura do ião Q.
- 3. As afirmações que se seguem são todas parcial ou totalmente incorrectas. Corrija-as convenientemente.
 - A No composto N₂O, cuja estrutura é um híbrido de ressonância, $[|N \equiv N - \overline{O}| \leftrightarrow \overline{N} = N = \overline{O}]$, o número de oxidação médio do azoto é + 1, o que significa que ambos os átomos de azoto têm número de oxidação \pm 1 .
 - B As moléculas HF, bem como as moléculas CO2, em fase sólida, mantêm-se unidas por forças de dispersão de London.
 - C As moléculas BF₃ e NH₃ apresentam a mesma geometria: são ambas moléculas trian-
 - D Uma solução aquosa de carbonato de sódio é neutra, porque nenhum dos iões Na⁺ e CO₃²⁻ se hidrolisa.
 - E Apesar das moléculas H₂O terem pares de electrões não ligantes e as moléculas CH₄ não terem, os ângulos de ligação HÔH e HĈH são iguais porque são ambos ângulos de um tetraedro.

- 4. Estabeleça a correspondência correcta entre A, B, C, D e A', B', C', D'.
 - A A temperatura de um corpo depende
 - B A cor que uma substância apresenta depende
 - C O facto de uma molécula poder ter ou não vibrações de flexão depende
 - D Numa molécula diatómica, a distância internuclear depende

- A' de ser constituída por um ou dois átomos apenas ou por mais de dois átomos.
- B' das excitações electrónicas que as suas moléculas podem experimentar.
- C' da energia cinética média das suas partículas constituintes.
- D' da repulsão electrónica, da repulsão nuclear e ainda da atracção entre núcleos e electrões.
- 5. Num vaso de 2,00 dm³ de capacidade, introduz-se uma amostra de 0,365 g de carbamato de amónio (massa molar = 78,08 g mol⁻¹). O carbamato de amónio decompõe-se, podendo estabelecer-se o equilíbrio:

$$NH_4CO_2NH_2$$
 (s) \implies $2NH_3$ (g) $+$ CO_2 (g)


Num estado de equilíbrio, a 25° C, a pressão parcial do CO₂ (g) é 0,0386 atm.

- 5.1. **Mostre** que a quantidade de carbamato de amónio introduzida no vaso permite que, a 25° C, seja atingido um estado de equilíbrio.
- 5.2. Verifique que, a 25° C, e exprimindo as pressões em atmosferas, é $Kp = 2.30 \times 10^{-4}$.
- 5.3. O volume do vaso que continha o sistema em equilíbrio reduziu-se de 2,00 dm³ para 1,00 dm³. Dos valores apresentados a seguir, **indique justificando** qual deles representa a pressão parcial do CO₂, no novo estado de equilíbrio, ainda à temperatura de 25° C.

Pco₂/atm	0,0386	0,072	0,0193	0,0286
----------	--------	-------	--------	--------

- 6. As afirmações que se seguem estão todas correctas. **Justifique-as** convenientemente, apresentando os respectivos cálculos quando forem necessários.
 - A É possível adicionar 1.0×10^{-4} mol de ião $\mathrm{Ba^{2+}}$ a $100~\mathrm{cm^3}$ de uma solução de fluoreto de hidrogénio, HF , $1.0~\mathrm{mol~dm^{-3}}$ sem precipitar fluoreto de bário.
 - B Segundo a teoria das orbitais moleculares (T. O. M.), as moléculas H₂ são muito estáveis enquanto as moléculas He₂ o não são.
 - C Uma solução que é 0,100 mol dm $^{-3}$ em cloreto de amónio, NH₄ C ℓ , e 0,100 mol dm $^{-3}$ em hidróxido de sódio, NaOH, tem [H₃O $^+$] = 7 \times 10 $^{-12}$ mol dm $^{-3}$.
 - D Um feixe pouco intenso de luz visível não é capaz de ejectar electrões de uma chapa de cobre e, por mais que se aumente a sua intensidade, nunca se poderá verificar o efeito fotoelectrónico.
 - E 4,8 g de um composto de carbono, hidrogénio e oxigénio (massa molar = 60 g mol⁻¹) deram, por combustão, 7,0 g de CO_2 (massa molar = 44,0 g mol⁻¹) e 2,88 g de H_2O (massa molar = 18,0 g mol⁻¹). A fórmula molecular do composto referido é $C_2H_4O_2$.

7. Considere a célula electroquímica representada a seguir:

- 7.1. Escolha, justificando, a espécie química que se oxida e a espécie química que se reduz.
- 7.2. **Escreva** as equações químicas que traduzem as reacções de eléctrodo nesta célula electroquímica.
- 7.3. Indique, justificando, qual é o eléctrodo positivo e qual é o eléctrodo negativo.
- 7.4. Que partículas carregadas constituem a corrente eléctrica em A , B e C ? Indique os sentidos em que estas partículas se movem.

ENSINO SECUNDÁRIO

12.° ANO DE ESCOLARIDADE — VIA DE ENSINO

(1.º e 5.º CURSOS)

Duração da prova: 1h e 30m 1990 1.ª FASE 1.ª CHAMADA

PROVA ESCRITA DE QUÍMICA

CRITÉRIOS DE CORRECÇÃO

- NOTA 1: Os erros de cálculo não deverão ser penalizados, uma vez que os alunos podem usar máquinas de calcular.
- **NOTA 2**: Se, na resposta a qualquer pergunta, o aluno se servir de dados incorrectos, obtidos em alíneas anteriores, não lhe deverá ser feita, por esse facto, nenhuma dedução na cotação a atribuir.
- NOTA 3: As cotações parcelares só deverão ser tomadas em consideração quando a resposta não estiver totalmente correcta.
- NOTA 4: Nas perguntas que impliquem escolha de espécies químicas não deverá ter qualquer cotação a resposta que contenha a indicação de um número de espécies superior ao devido.

1.				25	pontos
	A verdadeira	5	pontos		
	B falsa	5	pontos		
	C verdadeira	5	pontos		
	D verdadeira	5	pontos		
	E falsa	5	pontos		
2.				31	pontos
	2.1				
	2.2. $(2 \times 2 + 2 \times 2 + 2)$		•		
	2.3. (3 + 3)				
	Não deverá ter qualquer cotação a resposta que envolva a apresentação de outros compostos além dos dois devidos.				
	2.4.	2	pontos		
	2.5.	4	pontos		
3.				30	pontos
	A	6	pontos		
	$\overline{\underline{N}} = N = \overline{\underline{O}}$ (-1; + 3)				
	$ N \equiv N - \overline{\underline{O}} $ (0; + 2)				
	Se o aluno apresentar outra fórmula de estrutura, além das indicadas e calcular correctamente os números de oxidação, deverá ser-lhe atribuída a cotação total.				

B	6 pontos 6 pontos 6 pontos 6 pontos	
4. A — C'; B — B'; C — A'; D — D'		8 pontos
5		28 pontos
n.º de moles de carbamato decomposto		
conclusão 2 pontos 5.2.	·	
6		46 pontos
expressão do Ka 2 pontos cálculo da [F¯]e 3 pontos expressão do Ks 2 pontos verificação de que com [F¯]e e com o n.º de moles de Ba²+ adicionados não há precipitação 5 pontos C comparto de que a solução é equivalente a uma solução de NH₃ 0,10 mol dm⁻³ 5 pontos expressão do Kb 2 pontos cálculo da [OH¯]e 2 pontos expressão do Kw 2 pontos cálculo de [H₃O¯+]e 1 ponto D	6 pontos 12 pontos 6 pontos	
cálculo da massa (ou do n.º de moles) de carbono	10 pontos	

7.							32	ponto	S
	7.1. reduz-se Fe ³⁺ (aq) e oxida-se Cu(s)								
	7.2	(2	+	2)	4	pontos			
	7.3. Pt é o eléctrodo positivo e Cu é o eléctrodo negativo	(4	+	4)	8	pontos			
	7.4	(6	+	6)	12	pontos			
	TOTAL						200	ponto	S