ENSINO SECUNDÁRIO

12.º ANO DE ESCOLARIDADE — VIA DE ENSINO

(1.º e 5.º CURSOS)

CURSOS TÉCNICO-PROFISSIONAIS

Duração da prova: 2h

1.ª FASE

1988

1.ª CHAMADA

PROVA ESCRITA DE QUÍMICA

Nos exercícios que envolvam cálculos numéricos, é obrigatória a sua apresentação.

DADOS QUE PODERÃO SER NECESSÁRIOS

Números atómicos e massas atómicas

$$_{1}H = 1,008$$
 $_{7}N = 14,01$ $_{6}C = 12,01$ $_{2}He = 4,003$ $_{5}B = 10,81$ $_{8}O = 16,00$ $_{16}S = 32,06$ $_{35}Br = 79,90$ $_{47}Ag = 107,9$

Constante dos gases ideais $R = 8.2 \times 10^{-2}$ atm dm³ K⁻¹ mol⁻¹ Constante de Avogadro N = 6,02 \times 10 23 mol $^{-1}$ Massa do electrão $m = 9,11 \times 10^{-31} \text{ kg}$ Velocidade da luz no vazio c = $3.00 \times 10^8 \text{m s}^{-1}$

Energias do electrão em partículas monoelectrónicas

$$E = - \frac{2,17 \times 10^{-18} \, Z^2}{n^2} \, J$$

Constante ebulioscópica do ciclo-hexano

$$K_e = 20.1 \text{K kg mol}^{-1}$$

 $Ka = 4.9 \times 10^{-10}$ Constante de ionização do ácido cianídrico (25 °C): $Kw = 1.00 \times 10^{-14}$

Produto iónico da água (25 °C)

Electronegatividades

$$C \rightarrow 2,55$$
 $H \rightarrow 2,20$
 $S \rightarrow 2,58$ $O \rightarrow 3,44$

Logaritmos de alguns números

$$\log 3 = 0.5$$
 $\log 5 = 0.7$ $\log 7 = 0.8$

- 1.
- 1.1. Das proposições A, B, C e D escolha aquela que completa de modo correcto a frase:
 - "O ponto de fusão é mais elevado no n-butano (-138 °C) que no metil-butano (-160 °C) porque
 - A a molécula do metil-butano tem maior número de átomos de carbono que a molécula do n-butano".
 - B a molécula do n-butano não tem cadeia ramificada como a molécula do metil-butano".
 - C o número total de átomos é maior na molécula do metil-butano que na molécula do n-butano".
 - D o número de oxidação médio do carbono é -2,5 no n-butano e -2,4 no metil-butano".
- 1.2. Numa molécula diatómica, a recta definida pelos núcleos, na região vizinha dos mesmos, tem grande densidade electrónica relativamente a electrões cujo comportamento é descrito por certas orbitais moleculares.
 - Das orbitais indicadas a seguir, **escolha** as que descrevem o comportamento desses electrões.
 - A ligante σ
- C antiligante σ
- B ligante π
- D antiligante π
- 1.3. O estado fundamental de um átomo é aquele a que corresponde a menor energia. Das configurações electrónicas seguintes, propostas para o átomo de enxofre,
 - $A [Ne] 3s^2 3p^1 3p^1 3p^1 4s^1$
 - $B [Ne] 3s^2 3p^2 3p^1 3p^1 4s^0$
 - $C [Ne] 3s^2 3p^2 3p^2 3p^0 4s^0$

escolha, justificando

- a) a que corresponderá ao estado fundamental.
- b) a que corresponderá ao estado com maior energia.
- 1.4. A 100 cm 3 de uma solução 1,00 mol dm $^{-3}$ em NaCl adicionaram-se 100 cm 3 de uma solução 1,00 mol dm $^{-3}$ em NH $_4$ Cl.
 - a) Escolha a afirmação correcta:
 - A A concentração do ião cloreto em 100 cm³ da solução resultante é 1,00 mol dm⁻³.
 - B A concentração em NH4⁺ (aq) na solução resultante é 2,00 mol dm⁻³.
 - C A concentração em ião cloreto na solução resultante é 2,00 mol dm⁻³.
 - b) Escreva os nomes dos compostos NaCl e NH4 Cl.

- 2. As afirmações dadas a seguir são todas verdadeiras. **Justifique-as**, apresentando os respectivos cálculos, quando tiver que os efectuar.
 - 2.1. A 25 °C, o pH de uma solução 0,10 *M* de cloreto de hidrogénio, HCl, é 1,0 e o pH de uma solução de ácido cianídrico, HCN, também 0,10 *M*, é 5,2.
 - 2.2. Na propanona, o átomo de carbono central tem número de oxidação $+\ 2$ e os átomos de carbono nas extremidades da cadeia têm número de oxidação -3.
 - 2.3. O ângulo de ligação H \hat{O} H, em H₂O (104,5°), é maior que o ângulo de ligação H \hat{S} H, em H₂S (92,2°).
- 3. Considere as espécies moleculares que se apresentam a seguir.

A — C_6H_5OH (aromático) D — CS_2 B — CO_3^{2-} E — NH_4^+ C — BH_3 F — O_3

- 3.1. De acordo com a teoria das orbitais moleculares (TOM), **deduza** as fórmulas de estrutura das partículas BH₃ e CS₂.
- 3.2. Com base na regra do octeto, deduza as fórmulas de estrutura das restantes espécies apresentadas (A, B, E e F), assinalando os híbridos de ressonância.
- 3.3. **Seleccione**, do conjunto de geometrias indicadas a seguir, a que corresponde a cada uma das partículas referidas anteriormente (A, B, D, E e F).

a' — anel planar
 b' — piramidal triangular
 c' — angular
 d' — tetraédrica

- 3.4. Escreva os nomes dos compostos A e D.
- Na produção industrial do permanganato de potássio, o ião manganato em solução aquosa, MnO₄²⁻(aq), é oxidado a ião permanganato MnO₄⁻(aq), pelo cloro, Cl₂.
 - 4.1. **Escreva** as equações químicas que traduzem as reacções de oxidação e de redução.
 - 4.2. Escreva a equação química que traduz a reacção total.
 - 4.3. O bromo e o iodo não são igualmente adequados a esta reacção. **Escolha** a proposição que justifica a afirmação anterior.
 - A O bromo e o iodo têm menor electronegatividade que o cloro.
 - B O bromo e o iodo têm energias de ionização inferiores à do cloro.
 - C O bromo e o iodo têm potenciais normais de redução inferiores ao do cloro.
 - D O bromo e o iodo têm menor electroafinidade que o cloro.

- 5. Um composto orgânico de carbono, hidrogénio e bromo contém 2,13% de hidrogénio.
 - 5.1. Por tratamento conveniente de 0,564 g do composto referido, transformou-se todo o bromo em brometo de prata tendo-se obtido um resíduo de 1,128 g de brometo de prata.

Mostre que a percentagem de bromo no composto orgânico é 85,1%.

- 5.2. Uma solução de 0,505 g do composto orgânico citado, em 50,0 g de ciclo-hexano, tem um ponto de ebulição superior em 1,08 °C ao ponto de ebulição do ciclo-hexano nas mesmas condições de pressão.
 Mostre que a massa molar do composto orgânico é 188 g mol⁻¹.
- 5.3. Utilizando os valores dados e os resultados obtidos nos números anteriores, **mostre** que as fórmulas empírica e molecular do composto são CH_2Br e $C_2H_4Br_2$.
- 6. Iões He^+ excitados, com o seu electrão no nível 4, emitem uma radiação de comprimento de onda $\lambda = 125$ nm.
 - 6.1. Determine o nível de energia para que transita o electrão nesse ião.
 - 6.2. A radiação emitida pelo ião He⁺, nas condições referidas, incide numa placa de tungsténio, produzindo emissão electrónica. Sendo de 184 kJ mol⁻¹ a energia máxima dos electrões emitidos, calcule a primeira energia de ionização do tungsténio.
- 7. Uma amostra gasosa de 2,76 g de N₂O₄, à temperatura de 0 ° C, foi encerrada num balão de 500 cm³; o gás no balão ficou à pressão de 1,34 atm. De seguida o balão e o gás foram aquecidos a 25 ° C, tendo-se estabelecido o equilíbrio descrito pela equação química

$$N_2O_4(g)$$
 \longrightarrow $2NO_2(g)$

para o qual é $K_p(25 °C) = 0.14 atm.$

- 7.1. Mostre que a 0 °C praticamente nenhum N₂O₄(g) está dissociado.
- 7.2. Calcule as pressões parciais dos gases presentes no equilíbrio, a 25 °C.
- 7.3. Indique, justificando, se a 50 °C o K_p terá um valor superior, igual ou inferior a 0,14 atm.
- 8. Os comprimentos das ligações C-O e C=O são, em média, respectivamente 0,143 nm e 0,121 nm.
 - a) Sabendo que HCOOH (ácido metanóico) tem duas ligações carbonooxigénio, uma com o comprimento de 0,136 nm e outra com o comprimento de 0,123 nm, discuta a provável estrutura daquela partícula.
 - b) No ião HCOO⁻, a ligação carbono-oxigénio tem um único comprimento, 0,127 nm. **Discuta** a provável estrutura do ião HCOO⁻ e compare-a com a da molécula de ácido metanóico.

ENSINO SECUNDÁRIO

12.º ANO DE ESCOLARIDADE — VIA DE ENSINO (1.º e 5.º CURSOS) CURSOS TÉCNICO-PROFISSIONAIS

Duração da prova: 2h

1.ª FASE

1988

1.4 CHAMADA

PROVA ESCRITA DE QUÍMICA

CRITÉRIOS DE COTAÇÃO NOTA 1: Os erros de cálculo não deverão ser penalizados, uma vez que os alunos podem usar máquinas de calcular. NOTA 2: Se, na resposta a qualquer pergunta, o aluno se servir de dados incorrectos, obtidos em alíneas anteriores, não lhe deverá ser feita, por esse facto, nenhuma dedução na cotação a atribuir. NOTA 3: As cotações parcelares só deverão ser tomadas em consideração quando a resposta não estiver totalmente correcta. NOTA: Não deverão ter qualquer cotação as respostas às questões dos números 1.1., 1.2. e 1.4. a), se forem indicadas respectivamente mais do que 1,2 ou 1 frases. 1.1. B 5 pontos 1.2. A e C (3+3) 6 pontos 1.3. 14 pontos a) B (3+4) 7 pontos b) A (3+4) 7 pontos 1.4. 8 pontos a) A 5 pontos *b)* 3 pontos cloreto de sódio ... 1 ponto cloreto de amónio 2 pontos 2.1. 12 pontos reconhecimento de que o HCl se ioniza totalmente 2 pontos 3 pontos cálculo do pH substituição correcta das concentrações na expressão da constante de ionização do HCN 4 pontos cálculo da concentração hidroniónica e do pH 3 pontos

v.s.f.f.

			•	·	
3.					31 pontos
	3.1.		(3+4)	7 pontos	·
	3.2.		3+3+2+2)	10 pontos	
	3.3.			10 pontos	
		$A-a'\ \dots\dots\dots\dots\dots$	2 pontos		
		$B - e' \dots \dots \dots$	2 pontos		
		$D-d'\ \dots$	2 pontos		
		E — f'	2 pontos		
		F — c'	2 pontos		
	3.4.			4 pontos	
		A — fenol	-		
		D — sulfureto de carbono	2 pontos		
4					18 pontos
			•	5 pontos	
	4.3.	C		5 pontos	
				·	
5.					32 pontos
	5.1.	. (1). de de le b		10 pontos	
		cálculo da massa de bromo no bro- meto de prata	5 nontos		
		cálculo da % de bromo na amostra	5 pontos		
	5.2.		•	12 pontos	
		$\Delta t = k_c m$			
		expressão ou cálculo do n.º de			
		moles do soluto	4 pontos		
		expressão ou cálculo da molalida-	A nonton		
		dearticulação dos vários valores por	4 pontos		
		meio da fórmula	2 pontos		
	5.3.		(8+2)	10 pontos	
6.					20 pontos
	6.1.	n = 2 cálculo da energia do fotão		10 pontos	
		reconhecimento de que a energia	4 pontos		
		do fotão emitido é igual à variação			
		de energia do electrão	-		
	6.2.	$1,28 \times 10^{-18} \mathrm{J} \mathrm{ou} 771 \mathrm{KJ} \mathrm{mol}^{-1} \ldots$		10 pontos	
		redução dos valores das energias à	A nontos		
		mesma unidade	4 pontos		
		cálculo da energia de ionização	6 pontos		

7.					32 pontos
	7.1.			12 pontos	
		pV = nRT	2 pontos		
		substituição correcta na expressão anterior e cálculo de nidentidade entre o valor de n calcu-	6 pontos		
		lado e o n.º de moles de N₂O₄ intro- duzidas no balão	A pontos		
	7 2	$p(NO_2) = 0.42$ atm e $p(N_2O_4) = 1.25$	4 pontos	12 nontos	
	1.2.	cálculo da pressão do vapor das	atili	12 portios	
		0,03 mol de N₂O₄(g), a 25 °C	4 pontos		
		expressões das pressões parciais	2 pontos		
		dos gases N ₂ O ₄ e NO ₂ , no estado			
		de equilíbrio a 25 °C	6 pontos		
	7.3.	superior	(2+6)	8 pontos	
8.					10 pontos
	a) .			4 pontos	
	<i>b)</i> .			6 pontos	